
VU Research Portal

Improving Solution Architecting Practices

Poort, E.R.

2012

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Poort, E. R. (2012). Improving Solution Architecting Practices. [PhD-Thesis - Research and graduation internal,
Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Mar. 2024

https://research.vu.nl/en/publications/1373ba32-3030-4819-bea8-015a02e5bb3a

2
Resolving Requirement Conflicts

through Non-Functional Decomposition

A lack of insight into the relationship between (non-) functional requirements and

architectural solutions often leads to problems in IT projects. This chapter presents a

model that concentrates on the mapping of non-functional requirements onto functional

requirements for architecture design. We build a framework that both provides a model

and a repeatable method to transform conflicting requirements into a system decom-

position. This chapter presents the framework, and discusses two cases onto which the

method is applied. In one case, the method is successfully used to reconstruct the high-

level structure of a solution from its requirements. The second case is one in which the

method was actually used to create a solution design fitting the stakeholders’ needs,

and that is reproducible from its requirements.

2.1 Introduction

The primary result of any architectural design process is a blueprint of a solution, iden-

tifying the main components and their relationships from different views. A topic that is

currently under close scrutiny is the derivation of these architectural components from

the functional and non-functional solution requirements. The well-known discipline of

Functional Decomposition (FD) can be used as a basis, but will by itself rarely yield

a solution that fulfills the non-functional requirements. This is not surprising, since

rules of Functional Decomposition only deal with generic best practices for achieving

software quality, such as high cohesion and low coupling. FD has no rules to deal with

solution-specific quality requirements.

Several approaches exist for deriving a solution’s architecture from its NFRs:

15

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

• [Boehm and In, 1996] identifies a link between NFRs and a set of product and

process strategies to address them. The process Boehm proposes to select strate-

gies is called the WinWin spiral model [Boehm and Bose, 1994]; it is basically

a negotiation model.

• A group around Lawrence Chung and John Mylopoulos has done extensive work

on an NFR Framework, a process-oriented approach to deal with NFRs [My-

lopoulos et al., 1992, Chung et al., 1999]. They introduce the concepts of “soft-

goals” and “satisficing”, meaning that goals are set without clear-cut criteria

when they are fulfilled. Satisficing is a word for sufficiently satisfying the goals

from the stakeholders’ point of view. NFRs are modeled as conflicting or syner-

gistic goals in a softgoal interdependency graph. Design alternatives that realize

the NFRs can subsequently be evaluated using tradeoff analysis.

• In [Bosch, 2000] the subject is dealt with by first obtaining a functionality-based

architecture, and then applying architectural transformations to satisfy the NFRs.

A good example of a detailed method using this iterative approach is given

in [de Bruin and van Vliet, 2002].

• Publications of the Software Engineering Institute [Bass et al., 2003] show the

development of a framework and tooling towards methodical architectural de-

sign, based on NFRs: Attribute Driven Design.

• Another group has developed the Component - Bus - System - Property (CBSP)

method for iterative architectural refinement of requirements. In [Gruenbacher

et al., 2001], the need is mentioned to group artifacts to create an architecture,

but no indication is given how to do this.

All the approaches mentioned above rely on knowledge of the effect of a number

of known strategies on quality attributes. Every approach needs a pre-existing cat-

alogue of “product strategies” [Boehm and In, 1996], “operationalizations” [Chung

et al., 1999], “tactics” [Bass et al., 2003] or similar. The whole Patterns community is

based on the need to classify and document such known strategies [Gamma et al., 1995,

Buschmann et al., 1996, Gross and Yu, 2001]. In this chapter, we present a more direct

approach, based on first principles rather than a catalogue of pre-existing strategies.

We have developed a method for decomposing a solution based on the conflicts in the

solution requirements. We have named this method Non-Functional Decomposition

(NFD) to highlight the contrast with Functional Decomposition, and to emphasize the

importance of Non-Functional Requirements in this process.

NFD proposes a method for grouping and splitting of architectural entities based

on requirements, and is complementary to the CBSP approach in that sense.

16

2.2. MOTIVATION FOR NON-FUNCTIONAL DECOMPOSITION

A clear benefit of the NFD approach is that it focuses on non-functional and other

supplementary requirements right from the beginning, yielding a defined trace from

those requirements to the solution structure. Moreover, the development process and its

requirements are also integrated in the approach, giving a better basis for architectural

and project decision trade-offs.

The sequence of this chapter is as follows. First, we will present and discuss some

of the shortcomings of the generally accepted model for the architectural design pro-

cess. We will then develop a refined model of this process. Then we will describe the

process for deriving solution structure from supplementary requirements that is based

on this model. The succeeding sections then describe two cases: one in which the NFD

method was used, and one in which it is applied retrospectively to show its validity. We

conclude with a discussion.

2.2 Motivation for Non-Functional Decomposition

Our interest in Non-Functional Decomposition is based on a number of distinct obser-

vations from our substantial experience in architectural design.

• Cohesive force of supplementary requirements: good architectures tend to cluster

functions with similar supplementary requirements in the same subsystem.

• Divide-and-conquer conflict resolution principle: if a subsystem has to fulfill

conflicting requirements, it is useful to separate the parts that cause the con-

flict(s).

• Entanglement of function, structure and building process of software: these three

elements are highly interrelated.

NFD is a framework consisting of both a model of the elements involved in the

architectural process, and a method for architecting software-intensive systems based

on solution requirements. It is a framework in the sense that it does not venture into the

details of achieving specific quality attributes (or other supplementary requirements);

there is ample literature available for each conceivable attribute. Rather, it highlights

the relationships between these requirements, their conflicts and ways to resolve them.

It also helps in making choices about the development process.

17

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

Figure 2.1: Accepted model of relationship between requirements and architecture.

2.3 Model of Requirements and Architecture

2.3.1 Accepted model for architectural design

When studying the available literature on the relationship between requirements and

architecture (see §2.1), the following widely accepted model emerges.

System Requirements are usually divided into Functional and Non-Functional Re-

quirements. These Non-Functional Requirements (NFRs) are often referred to as Qual-

ity (Attribute) Requirements; these two are treated more or less as synonyms. A gener-

ally accepted principle is the leading NFR principle: in designing system architectures,

the Non-Functional or Quality Requirements are at least as important as the Functional

Requirements. In order to satisfy NFRs the software architect applies Architectural

Strategies to the system design, such as design patterns, layering techniques, etc. The

architect’s task then becomes an n-dimensional optimization problem: find the combi-

nation of architectural strategies that yields a solution with the best fit to the n NFRs.

The implicit model underlying this reasoning is depicted in Fig. 2.1. Although the

simplicity of this view has its merits, in our experience it has some shortcomings. Par-

18

2.3. MODEL OF REQUIREMENTS AND ARCHITECTURE

ticularly, the relationship between quality attributes and non-functional requirements

is oversimplified, and it ignores the fact that functional requirements can also be very

important in architectural design. It also ignores that NFRs often put constraints on

the solution development process rather than on the solution architecture, implying

that architectural choices are not the only contributors to satisfy NFRs. Conversely,

requirements on the development process like project deadlines and budget limitations

can have a large impact on solution architecture.

2.3.2 Refined requirements classification for NFD

Our new NFD model, as is illustrated in Fig. 2.2, refines the classification of require-

ments, and is more detailed on the non-functional aspects. Two major differences

come to the foreground: functional requirements are split into primary and secondary

functional requirements, and the secondary functional requirements are grouped to-

gether with the non-functional requirements. This group is called supplementary re-

quirements. Additionally, a distinction is made between two types of non-functional

requirements: quality attributes and delivery requirements.

Let us now define the Primary and Supplementary Requirements groups in more

detail.

Primary Functional Requirements are demands that require functions which di-

rectly contribute to the goal of the solution, or yield direct value to its users. They

represent the principal functionality of the solution. The identification of primary re-

quirements (which ones to select) is similar to determining which processes in an orga-

nization are primary processes. All primary requirements are functional (there are no

non-functional primary requirements), but not all functional requirements are primary

requirements, as will be explained in the next section.

Supplementary Requirements represent all other requirements imposed on the so-

lution. They can be functional or non-functional. Supplementary requirements (SRs)

are always about primary requirements, and usually put constraints on how the primary

functionality is implemented. In the NFD model, the Supplementary Requirements are

further divided into three subcategories:

1. Secondary Functional Requirements (SFRs) require functionality that is sec-

ondary to the goal of the solution. Examples are functions needed to manage

the system or its data, logging or tracing functions, or functions that implement

some legal requirement. Like all other SRs, they usually apply to a particular

subset of the primary requirements. For example, “All transactions in module

X should be logged”, or “access to data in table Y is subject to authorization

19

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

Figure 2.2: The NFD model of the relationship between solution requirements and

architecture.

20

2.3. MODEL OF REQUIREMENTS AND ARCHITECTURE

according to model Z”. SFRs are usually not quantifiable: the solution either has

the functionality or it doesn’t.

2. Quality Attribute Requirements (QARs) are quantifiable requirements about so-

lution quality attributes. They can always be expressed as a number and a scale,

e.g. following Gilb’s notation techniques [Gilb, 2005]1. Examples of QARs are

reliability, usability, performance and supportability. There are many taxonomies

available, e.g. SQuaRE [ISO/IEC 25000, 2005].

3. Delivery Requirements constitute the third category of supplementary require-

ments. They put constraints on the solution that cannot be measured by sys-

tem assessment, and incorporate e.g. managerial issues. Examples of DRs are

time-to-market, maximum cost, resource availability and outsourcibility. Deliv-

ery requirements can be expressed in “-ilities” that make them resemble quality

attribute requirements, such as affordability or viability, but they are not about

solution quality. However, they can be just as important to solution design as

functional or quality requirements.

A solution’s compliance with QARs and SFRs can in principle be measured by

anyone having access to the system once it has been realized, regardless of whether

they know about its history or its cost. Compliance with Delivery Requirements can

only be assessed by looking at how the solution was realized.

There is a relationship between Secondary Functional Requirements (SFRs) and

functional solutions to Quality Attribute Requirements, which will be discussed later.

SFRs can usually be traced back to a high-level quality need, but to express them as

a quality requirement would leave too much room for interpretation. For example,

the requirement to log system errors over an SMTP interface is an implementation of

a manageability need, but to just require that “System management should require at

most 0.1 FTE” would allow other, perhaps less desirable solutions. Satisfying Quality

Attribute Requirements may also entail adding functionality to the solution, but this

time the choice of functionality is at the architect’s decision.

2.3.3 The nature of requirement conflicts

The reason for a classification into primary and secondary requirements is a preparation

for the NFD process that leads to solution decomposition exploiting the requirement

conflicts. The NFD version of the leading NFR principle cited above is that in design-

ing solution architectures, the supplementary requirements are more important than

1Tom Gilb first introduced these techniques in [Gilb, 1988], and later incorporated them in the “plan-

guage” notation [Gilb, 2005]

21

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

the primary requirements. Primary requirements are never conflicting: if they would,

the requirements would be intrinsically inconsistent or the problem statement poorly

posed. However, supplementary requirements including secondary functional require-

ments, can appear to be conflicting, as is explained in the following paragraph.

Requirements on a software system are not intrinsically conflicting, because con-

flicts arise from limitations in the design strategy domain. Boehm and In have based

their software tools for identifying quality-requirement conflicts on this fact [Boehm

and In, 1996]. We have further analyzed the common strategies to satisfy supplemen-

tary requirements, including quality attributes. Our analysis clarifies that some quality

attributes and delivery requirements may be so tightly bound to certain types of strate-

gies, that they are effectively inherently conflicting. This situation arises when a quality

attribute can only be achieved by one class of strategies, and when this class of strate-

gies is invariably detrimental to another quality attribute. The Feature-Solution graphs

introduced in [de Bruin and van Vliet, 2002] provide a good way to visualize these

conflicts. We will illustrate this point with a few examples.

We have categorized the strategies for fulfilling software quality requirements into

three types and nicknamed them the three strategy dimensions of solution construction:

the process dimension, the structure dimension and the functional dimension.

1. One way to achieve supplementary requirements is by making choices in the

software building process. Models like the Capability Maturity Model Integra-

tion [CMMI Product Team, 2010] and other software process improvement prac-

tices generally aim at improving the quality of software. Recommended practices

have been documented to achieve certain quantified Safety Integrity Levels [IEC

61508, 1999] or to fulfill certain security requirements [CCPSO, 1999]. These

practices tend to make the software construction process more expensive, giving

rise to the first example of inherently conflicting requirements: reliability versus

affordability (not an NFD quality attribute, but possibly a delivery requirement).

2. Another way to influence quality attributes or to satisfy other supplementary re-

quirements is by making choices in the structure of the software. Examples

of software structuring solutions include layering, applying of design patterns,

choosing higher or lower level languages, modifying the granularity or modular-

ity of the software, and so on. We have started to explore this area somewhat

in [Poort and de With, 2003]. Generally speaking, the structure-based solutions

seem to have one common element: more structure (i.e. higher level program-

ming language, more layers, higher granularity etc.) means better modifiability,

but less efficient code. This is the second example of inherently conflicting qual-

ity attributes: modifiability versus efficiency.

22

2.3. MODEL OF REQUIREMENTS AND ARCHITECTURE

3. The third way to achieve supplementary requirements is by building functional-

ity that is specifically aimed at achieving a quality or delivery objective. Exam-

ples are encryption and access control functionality to achieve a certain security

goal [CCPSO, 1999], or caching functionality to achieve a certain response time

and thus increase usability. Although these types of strategies are not specifically

detrimental to other quality attributes, they do increase the size and complexity

of the solution, leading to effects such as lower affordability and reliability. The

reader should note the difference between secondary functional requirements

with underlying quality needs and functional strategies aimed at satisfying qual-

ity attribute requirements. In the former case, the functional strategy is raised

to the status of requirement and the responsibility of the requirement specifier.

In the latter case, the functional strategy is the responsibility of the architect.

In practical situations, this dichotomy may be ambiguous and quality needs are

translated into functional solutions by an iterative process that involves both the

requirements specifier and the architect.

In the above examples of “inherently conflicting” requirements, the conflicts emerge

when applying the solution strategies to a single subsystem or component. These con-

flicts can often be resolved by separating the subsystem or component into different

parts, and applying different solution strategies to the respective parts. Viewed from

this perspective, modifiability and efficiency need not be conflicting: one can decom-

pose a solution into low-coupled subsystems for modifiability, and then apply strategies

for making the code of each subsystem more efficient. Approaches of this kind are put

into practice intuitively by experienced architects, and we have modelled them in our

Non-functional Decomposition Framework.

2.3.4 Applying solution strategies

The NFD model of the architecture process refines the n-dimensional optimization

problem of the consensus model into a 3 × 3 matrix. The cells of this matrix con-

tain strategies from each of the three strategy dimensions fulfilling each of the three

types of requirements. Whereas the diagonal of the matrix contains obvious strategies

(e.g. functional solutions to functional requirements), the off-diagonal cells often sug-

gest important solutions that can help achieve requirements that would otherwise pose

problems. Without being complete, we provide some examples of each of the matrix

cells.

Functional strategies aimed at functional requirements: the required functions

should be implemented.

Functional strategies aimed at quality-attribute requirements: these are functions

23

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

like encryption, access control, caching and duplication, that are specifically designed

to achieve a quality objective.

Functional strategies aimed at delivery requirements: delivery requirements, like

outsourcing or time-to-market limitations, often exist. Their realization points to e.g.

reuse of off-the-shelf components or purchasing and integrating commercial products.

Structural strategies aimed at functional requirements: examples of structures that

contribute to functional requirements are database normalization, extracting of generic

functionality, functional or non-functional decomposition.

Structural strategies aimed at quality-attribute requirements: lead to programming

in patterns, but there are also other structural strategies contributing to quality at-

tributes, such as the choice of programming language or correct parametrization. The

NFD method itself also contributes to fulfilling quality-attribute requirements.

Structural strategies aimed at delivery requirements: delivery requirements like

preferred release schedules can be realized by adapting the structure of the solution

to accommodate incremental deployment. Another example is the choice of a rapid

development platform (fourth generation language), which dictates a particular solution

structure. NFD can also be applied here.

Process strategies aimed at functional requirements: an example is using a conven-

tional cascade-development method, which prioritizes system functionality over time

and budget limitations.

Process strategies aimed at quality-attribute requirements: examples of these are

best practices from the Software Process Improvement community to improve reliabil-

ity, or Common Criteria assurance packages to achieve security goals.

Process strategies aimed at delivery requirements: delivery requirements such as

“user involvement” can be realized by prototyping, or “strict deployment deadline”

by using a development method such as EVO [Gilb, 2005] or the Rational Unified

Processr2 (RUPr) [Kruchten, 1998] that employs time-boxing techniques.

The combination of applied strategies in the process dimension results in the best

development process to fit the solution requirements. The sum of the applied functional

strategies and the realization of the primary functional requirements together compose

the solution functionality. The solution architecture consists of a high-level descrip-

tion of the applied functional (logical view) and structural (subsystem, development,

deployment views) strategies.

2RUP, Rational and Rational Unified Process are trademarks of International Business Machines Corpo-

ration.

24

2.3. MODEL OF REQUIREMENTS AND ARCHITECTURE

Figure 2.3: The NFD Process.

2.3.5 The role of the NFD process

Non-Functional Decomposition (NFD) is a strategy in the structural dimension of so-

lution construction. The NFD process helps to optimize the structure of the solution

for all supplementary requirements, including delivery and secondary functional re-

quirements, which are generally associated with process or functional strategies first.

It does this by adapting the solution structure to the requirement conflicts in the solu-

tion, and isolating conflicting requirements in subsystems that can then be individually

optimized by applying process, structural or functional strategies. It is essentially an

iterative divide-and-conquer strategy for resolving requirement conflicts.

25

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

2.4 The NFD Process

The process of NFD is depicted in Fig. 2.3 and contains the following steps.

Gather and prioritize requirements can be based on any modern requirements elic-

itation technique, provided that the documented requirements show how the Primary

Functional Requirements (PFRs) are mapped to the Supplementary Requirements (SRs).

It is important that the requirements are somehow prioritized, since prioritization of

PFRs is important for project and release planning, and prioritization of SRs is impor-

tant for the architecture. Example from the Unified Process: in the UP, FRs are gen-

erally documented as use cases, and SRs as supplementary specifications. The NFD

method requires that the supplementary specifications are made specific to (groups of)

use cases, e.g. by documenting them in the Use-Case Descriptions, or specifying to

which use cases SRs apply in the Supplementary Specifications document. Another

way of linking SRs to FRs is the use of quality attribute scenarios as described in [Bass

et al., 2003].

Group functions based on supplementary requirements is the process of finding all

(primary) functional requirements that share or have similar supplementary require-

ments, and grouping them together. This will yield a number of cross-sections of the

functionality of the solution, depending on which supplementary requirement is used

as a grouping criterion. In this step, the distinction between PFRs and SRs is less im-

portant: each group will have a number of functions, originating from both primary

and secondary requirements, which will be treated equally during the remainder of the

process. Example: a time-to-market priority grouping will divide functionality into

groups that are candidates to be included in different release phases of the solution,

while availability grouping will divide functionality into candidate groups to run on

platforms with differing availability characteristics.

Identify supplementary requirement conflicts yields two types of conflicts:

1. Grouping conflicts are caused by differences in grouping of functions, i.e. the

grouping of the functions is significantly different from one SR to the other. Ex-

ample: there are three function groups, called WorkFlow, DataEntry and Anal-

ysis (Fig. 2.4). Security requirements for DataEntry and Analysis are similar

and more restrictive then those for WorkFlow, but modifiability requirements for

Analysis are more stringent than those for DataEntry and WorkFlow.

2. In-group conflicts are conflicting supplementary requirements within one func-

tion group. Example: the Analysis function group from the previous example

has both critical performance requirements and high modifiability requirements.

26

2.4. THE NFD PROCESS

Figure 2.4: Grouping conflict example.

Split conflicting function groups deals with in-group conflicts. Most of the time, a

further analysis of an in-group conflict will show that the conflicting requirements can

actually be assigned to different functions. These functions are then separated, leading

to a splitting of the function group. The resulting two or more new function groups

may then be reconsidered for being included in other function groups, so the process

re-enters the “Group functions based on SRs” stage. This loop is repeated until no

in-group conflicts are left that can be split further. Function groups that cannot be split

in any way are flagged as risk factors. They deserve close attention during the rest of

the process and need to be dealt with prior to large-scale project implementation, e.g.

in an architectural prototype.

Draft and compare candidate decompositions: After the in-group conflicts are

solved, the resulting grouping conflicts will be the basis for the architectural decom-

position. A number of candidate decompositions into architectural components result,

each favoring the main supplementary requirement that the function grouping is based

upon.

At this stage, prioritization of supplementary requirements becomes important. In

our experience, the candidate decomposition that is based on the SRs having the highest

stakeholder priority, yields the architecture that best fits the stakeholder requirements.

This does not mean that we suggest that the n-dimensional optimization problem men-

tioned earlier can be reduced to a series of one-dimensional optimizations, designing

for the most important requirement first and then narrowing down the design choices

further for each requirement. But in the decomposition process, it turns out that the de-

compositions based on the SRs with the highest priority have the best chance of yield-

27

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

ing a solution the stakeholders can live with. In case of doubt, an impact analysis of

the top three decompositions can be made, e.g. by using the CBAM method [Kazman

et al., 2002]. The decomposition with the best fit to the stakeholder’s needs (including

risk and cost) is selected for implementation.

2.5 Case Study: Criminal Investigation System

2.5.1 Background

Two IT organizations affiliated with the Dutch ministry of internal affairs, the Con-

cern Informatiemanagement Politie (CIP, “Concern Information Management Police”)

and the ICT-Service Coperatie Politie, Justitie en Veiligheid (ISC, “ICT Service Co-

operation Police, Justice and Safety”), were developing a product line for nationwide

processing of and access to criminal investigation and intelligence data.3 The product

line was called Politiesuite Opsporing (PSO, “Police Suite for Investigation”). One of

the authors was the lead software architect for PSO, and NFD was used to design the

suite’s top-level decomposition. The main challenge was to create an architecture that

would allow the addition of many new products to the suite in the years to come, with-

out compromising the strict privacy and confidentiality requirements on the system.

2.5.2 Summary of requirements

The suite’s primary functionality is the support of all business processes related to crim-

inal investigation, including management of the processes, gathering of data through

multiple channels, and structuring and analysis of the data. The three most important

supplementary requirements according to the stakeholders are:

SR1 Authorization: access to criminal investigation data is restricted by special pri-

vacy laws. Unauthorized access to privileged data is by far the biggest threat to

a criminal investigation system.

SR2 Reliability: reliable application of authorization and other business rules is cru-

cial. The system should be designed in such a way that the enforcement of

especially authorization rules is reliable and stable, even after several product

generations.

3The authors would like to thank the ISC and CIP organizations for granting permission to publish this

case study.

28

2.6. CASE STUDY: DUTCH ROAD-PRICING SYSTEM

SR3 Development time: the criminal investigation systems currently in use are based

on obsolete architectures and there is an urgent need in the field to support new

functionality. Exceeding the stated deadline of one year of development time is

unacceptable.

SR1 is a secondary functional requirement, SR2 a quality attribute requirement,

and SR3 a delivery requirement.

2.5.3 Results

NFD was applied by first mapping the most important supplementary requirements

onto the functional features, and then basing the main architectural decomposition on

this mapping. SR1 applies specifically to the data gathered for criminal investigation

purposes. It turned out that the most reliable and best maintainable solution for the

future was to create a central component for access control and storage of these data.

Since the legal name for storage of such data is a police register, this central compo-

nent was named the “register vault”. By using off-the-shelf components supplied by a

database vendor, the register vault could be assembled and an architectural prototype

evaluated within a few months time, making a good start at satisfying SR3.

In this case, RUP was used to streamline the development process. The RUP Sup-

plementary Specifications artifact is the place to document quality and other supple-

mentary specifications, but the standard template treats these as system wide or “gen-

eral” requirements. We changed the template slightly to accommodate documenting the

mapping between primary and supplementary requirements. We did this at the level of

“features” as defined by RUP. This allowed us to document the trace from primary and

supplementary requirements to the system decomposition design decisions.

In the end, the Non-Functional Decomposition principles turned out to be very

useful in communicating to the stakeholders how our design decisions were related to

their stated supplementary requirements.

2.6 Case Study: Dutch Road-Pricing System

In this section we will apply the NFD model and process to analyze a large system on

roadpricing. One of the authors was involved in this project (until it was suspended for

political reasons), which is described below. Although NFD was not available at the

time, applying the method retrospectively to this case presents a good illustration of its

principles.

29

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

2.6.1 Background

In the late 1990s, the Dutch government decided to drastically change the tax system

for automobile owners and drivers. Automobile tax traditionally consisted of gasoline

tax, annual motor vehicle tax and BPM (personal motor vehicle tax payed once when

purchasing a vehicle). The system should be replaced by a direct tax system based

on usage: gasoline tax would be reduced to the legal European minimum, and annual

motor vehicle tax and BPM would be completely replaced by a roadpricing scheme

called “Kilometerheffing” (“Charging by kilometer”), hereafter referred to as KMH.

By differentiated pricing of road segments based on the time of day and location, the

scheme could also be used to make drivers avoid congested (and thus more expensive)

areas during rush hours. Feasibility of the scheme would highly depend on the use of

IT systems, some of which would have to be in the vehicle. The government planned

to share the cost of developing and manufacturing the in-vehicle systems (called “Mo-

bimeters”) with the multimedia, communication and automobile industries by making

generic components of those systems available to those industries.

2.6.2 System requirements

The Mobimeter requirements were shared with industry partners4 in order to facilitate

discussion. Without going into too much detail, the original requirements can roughly

be summarized as follows.

PF1 The system shall continuously measure the position and driving direction of the

vehicle.

PF2 The tariff used for calculating the cost during a journey is determined on the basis

of the following parameters (hereinafter referred to as Tariff Parameters):

• Date and time;

• Vehicle position;

• Direction of travel;

• Tariff table;

• Vehicle category.

PF3 A driver shall be notified of the applied tariff while driving.

PF4 The system shall determine the distance travelled by a vehicle.

4The original requirements were drawn up by a team led by Maarten Boasson (University of Amsterdam).

They were based on the “Mobimiles” report of Roel Pieper (University of Twente), which was never formally

published

30

2.6. CASE STUDY: DUTCH ROAD-PRICING SYSTEM

PF5 The mobility costs due is calculated as being the product of the distance travelled

times the current tariff.

PF6 At least once every month in which 1000 kilometers has been driven or at least

once per elapsed year, whichever comes earlier, all data shall be communicated

to the tax office.

PF7 The system shall be able to receive new tariff tables.

The associated supplementary requirements (SRs) are summarized below. For

brevity, we only mention the most important ones:

S1 Privacy: a vehicle’s mobility patterns may not be deducible, either in real time

(tracking) or afterwards from system data (tracing).

S2 Verifiability: the KMH Road-Pricing System shall enable verification that the road

pricing charge has been determined correctly, without requiring more than one

physical inspection per year.

S3 Provability: The system shall enable drivers to verify the correctness of the charges

by inspecting all relevant data.

S4 Security: All data required for the KMH Road-Pricing System process will be

protected against unauthorized modification.

S8 Re-usability: all in-vehicle system functions that could be useful for other applica-

tions shall be made available for re-use by third parties.

S12 Viability: industry partners and the relevant governmental and non-governmental

organizations shall be involved as much as possible in the development of the

KMH system.

S13 Standardization: any interfaces to be designed for in-vehicle equipment shall be

developed in close cooperation with the relevant standardization bodies.

S1, S4 and S8 are quality-attribute requirements. S2 and S3 are secondary func-

tional requirements. S12 and S13 are delivery requirements that originally did not

occur in the requirements document, but in the project plan. We mention them here

because in the NFD model they qualify as supplementary requirements. As will be

shown, they did impact the system architecture.

Table 2.1 shows how the original supplementary requirements map onto the pri-

mary requirements. Note that some of the mappings apply to subsets of a particular

31

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

Table 2.1: Original mapping of supplementary onto primary requirements.

PF1 PF2 PF3 PF4 PF5 PF6 PF7

S1 X X

S2 X X X X X

S3 X X X X X

S4 X X X X X X

S8 X X X X

S12 X X X X

S13 X X

primary functions only, e.g. standardization of only the interface, or protection of only

the data:5 a finer granularity of functionality will help us split and re-group the func-

tions later on. The next step in the mapping process would be to split up the PFs to

achieve a more exact mapping, but that exercise would be too detailed for this thesis.

A number of grouping strategies present themselves, but let us first look at the

glaring in-group conflict concerning privacy versus verifiability and provability in the

group PF1+PF6. According to NFD, we split the group to resolve the conflict. Clearly,

if all data on which the charge is based are communicated to the tax office, the privacy

requirement is violated. The objective is to split PF6 in such a way that only less

privacy-sensitive data are communicated and simultaneously maintain the verifiability.

After checking back with the stakeholders for the business-need behind PF6, it turns

out that we can split as follows

F6a At least once every month in which 1000 kilometers has been driven or at least

once per elapsed year, whichever comes earlier, the total charges and the total

distance per tariff shall be communicated to the tax office.

F6b Spot checks: a travelling vehicle shall be able to answer challenges made by

roadside-enforcement equipment by transferring all currently measured data and

the current tariff table.

F6c On request by the driver, the system shall communicate all data used to calculate

charges to him or her.

F6a is sufficient to fulfill PF6’s underlying need; F6b is a functional solution to S2,

and F6c is a functional solution to S3. F6b adds a short-range communication function

5The presence of supplementary requirements that apply to data elements or storage is quite common

in our experience; these requirements often lead to special data storage components, especially if they have

high priority.

32

2.6. CASE STUDY: DUTCH ROAD-PRICING SYSTEM

Table 2.2: Second iteration mapping of supplementary onto primary requirements.

PF1 PF2 PF3 PF4 PF5 F6a F6b F6c PF7

S1 X X X

S2 X X X X X X

S3 X X X X X X

S4 X X X X X X X X

S8 X X X X X X

S12 X X X X X X

S13 X X X X

to the Mobimeter, which falls under the re-usability and standardization requirements

S8, S12 and S13. This analysis leads to a new mapping table.

Table 2.2 shows the SR/FR mapping after splitting PF6. The conflict between S1

and S2 is now isolated in component F6b, the spot check function. This reflects the

issue that privacy-sensitive data are present in the spot-check equipment. We put this

conflict aside as a risk that will be managed by a protocol surrounding the management

of these data: how long they may be stored, to what purpose, etc.

Let us now look at grouping criteria. According to the stakeholders, security, pri-

vacy and viability through re-usability are the most important supplementary require-

ments and in that order of priority. The security requirement S4 groups the associated

data of all functions except the driver display, which basically means that the Mobime-

ter should contain a secure data storage component or “trusted element” that all KMH

functions should have access to. Privacy requirement S1 no longer applies to F6a, since

we split off the data from which the mobility pattern can be deduced. So S1 now groups

PF1, F6b and F6c. S1/F6b becomes the basis for storage requirements on the roadside

spot-check system, and the PF1/F6c group leads to a subsystem called the “user log”.

Finally, the viability and re-usability requirements S8 and S12 group the commu-

nications functions of F6a/b/c and PF7, the display of PF3 and the vehicle localization

of PF1 into a subsystem called the “In-vehicle Telematics Services platform”. This

platform is designed to have standardized interfaces (S13) both to the KMH-specific

part of the in-vehicle equipment and to any additional (optional) service-related com-

ponents such as a navigation system. It gives access to services like GPS localization

and long-range and short-range digital communication. The final system decomposi-

tion is shown in Fig. 2.5. In the final version, the localization function was separated

from the ITS platform in order to fulfill an additional reusability requirement on GPS

equipment, which was already supplied in some cars.

33

CHAPTER 2. RESOLVING REQUIREMENT CONFLICTS THROUGH

NON-FUNCTIONAL DECOMPOSITION

Figure 2.5: Mobimeter architecture.

2.7 Conclusions and Discussion

In this chapter, we have presented the Non-Functional Decomposition (NFD) model as

a technique to bring more clarity and structure in the mapping of requirements onto a

solution architecture. The key of our technique is to split the requirements into primary

and supplementary requirements, and to create a mapping between those categories.

The NFD process helps in optimizing the structure of the solution for all supplementary

requirements, including delivery and secondary functional requirements. NFD adapts

the solution structure to the requirement conflicts in the solution and isolates conflict-

ing requirements in subsystems that can then be individually optimized by applying

process, structural or functional solution strategies of which examples were presented.

The PSO product line was presented as a case study of the application of NFD. The

main result here was a well documented traceability between supplementary require-

ments and solution decomposition design decisions. This traceability supported the

project team in communicating to the stakeholders the effects of their stated require-

ments, and the rationale behind the main design decisions.

The KMH project was used as another case study, where we have indicated how

the Mobimeter architecture as it was published, can be reconstructed with the NFD

model. The examples of resolving in-group conflicts and grouping functions according

to supplementary requirements were given to show the application of the method and

34

2.7. CONCLUSIONS AND DISCUSSION

principles of NFD.

The validity of the observations on architecting is not only confirmed by our daily

work, but can be easily verified by evaluating successful architectures like client/server

or n-tier architectures. The components in these architectures all differ in their supple-

mentary behavior, and display specific geographical accessability, modifiability, effi-

ciency or portability attributes.

Of the existing requirements engineering literature, a large part focuses mainly

on obtaining and maintaining the right requirements [Robertson and Robertson, 2006,

Wiegers, 2003, Jackson, 2001, van Lamsweerde, 2009]. Decomposition is important

in these approaches, but applies to the structure of the requirements, rather than the

structure of the solution. In §2.1, we list a number of existing approaches in literature

for deriving a solution’s architecture from its NFRs[Boehm and In, 1996, Bosch, 2000,

Chung et al., 1999, Bass et al., 2003, Gruenbacher et al., 2001]. As mentioned be-

fore, these approaches all rely on a pre-existing catalog of strategies, called by various

names. NFD adds to these approaches a common rationale behind the strategies: a

rationale based on the principle that conflicting NFRs can be dealt with by separating

the functions that they apply to in the solution structure.

We view NFD as a framework that uses the observations made in §2.2 to improve

the architecting process. These observations are not new, we believe they have always

been implicit in the work of experienced designers and existing patterns and tactics.

By making them explicit, NFD makes the architecting process of transforming require-

ments into solution design more reproducible, more transparent and more reliable. It

also reveals rationale behind existing architectural patterns and tactics, and can be help-

ful in developing new patterns and tactics to deal with conflicting NFRs. Future work

is in further application of NFD in actual technically complex projects, and in the ex-

ploration of other areas in which it could be deployed.

35

